-

tance of DX ..« «

- in API Desic
- in API Desig
-
4 JO .\ ﬁ&

_api-desigr ' : : &) N&harwds‘a/

Developer Experience

Developers are to DX what users are to UX. They
are your consumers, and when your interface is
lacking in some way, they're the ones that
experience the pain of that.

Just like any internet consumer, developers are
real people, and have their own motivations to
which you can appeal.

Webpack

Pros cons
e Highly configurable. e A nightmare of an API.
e Very powerful as a e Too much power makes
developer tool. for a user-base of mostly
e Huge option set, plugin power-users.
support, custom e Slow adoption due to

transforms, etc. learning curve.

JQuery

Pros cons
e |diomatic, intuitive API. e Spaghetti code; pages of
e Chainable functions. function chain calls.
e Plugin support, which led e Sometimes, *too* flexible

to old school components. can be a bad, too.

Why is DX Important?

Products live and die by their feature sets and
adoption rates of their users. APIs aren't any
different, from a developer's perspective.

Why i1s DX Important?

If your product's API is:

e Difficult to consume
e Difficult to comprehend
e Difficult to remember

There will be fallout. As much as possible, you want to reduce
the friction to easily adopt and to easily adapt to changes as
they inevitably occur over the lifetime of your product.

Why i1s DX Important?

Get to know your users:

UX designers often conduct user surveys, interviews,
study NPS feedback, etc. The way our customers use
products isn't always the way we intend when we publish
them, and can help inform ongoing product evolution.

Why i1s DX Important?

APl designers should similarly learn how their consumers
are actually using their products, which can help inform
where unused cruft can be deprecated or obsoleted,
which helps reduce API surface area. It can also help
authors determine where functionality can be combined,
separated, or otherwise augmented to be more in line
with the habits of their actual users.

Why i1s DX Important?

The React team realized over time that a lot of their user
base were using lifecycle functions like componentWillMount
and componentWillUpdate to sync local state variables with

iIncoming prop values, so they provided a single function,

getDerivedStateFromProps, to handle that use case as part
of their deprecation strategy of the componentWill*
functions in version 16.

APl Designh Best Practices

"Make the change easy, then make the change."
-- Joshua Semar

API| Desigh Best Practices

e Not all of your users are going to be power-users.

e Not all of your users are going to be novices.

e A good API should naturally encourage code that
reads idiomatically. It should be inherently expressive.

e A good API should, by its very nature, be as
declarative as possible, and should mask complexities
and implementation details where it makes sense.
Give the developer what they need to do their job,
don't make them worry about how it gets done.

API| Design Best Practices

Array sort methods don't typically give you the option to
select your particular sorting algorithm. They simply give
you a function to call when you want your array sorted.
Internally, the language may opt to use an insertion,
merge, or any other kind of sorting algorithm, or a mix
based on its own internal rules, but as a consuming
developer, those aren't necessary details, unless they're
really trying to squeeze performance, in which case they'll
probably implement their own custom sort function.

API| Desigh Best Practices

Whenever possible, begin with low-level functions, and write
higher-level functions that consume them. This gives your
consumers a variety of granularity from which to choose.

get 'lodash.get’;
set 'lodash.set’;

({
prop: (prop, value) => {
(value ===) {

get (r PXop);

1
2
3
4
5
6
7
8

}

\D

10 set (r prop, value);

11 o

12

13 data: (id, value) => .prop(dataset${id === 2 "' " .8{id} } , value),
14

15 html: (html) => .prop(innerHTML', html),

16 })s

API| Designh Best Practices

Whenever multiple functions share similar or overlapping
functionality, see if you can consolidate them to reduce the
overall APl surface and internalize complexities.

myNode = $('.some-identifier’');
myNodes = $$('.some-identifier');

myNode $(' .some-identifier’').first();
myNode $(' .some-1dentifier:first’);
myNode S(' .some-identifier:eq(0) ');
myNodes = $(' .some-identifier’)

1
2
3
4
5
6
7
8
9

API| Designh Best Practices

Whenever possible, stick to a single paradigm for the API input/output

myJankyApi = {
someFunction = () => ,
someOtherFunction = () => Promise(resolve
setTimeout(() => {
resolve () ;
}, 1000);

})
}i:

O ~J oYW b WN K

I,_I.
O O

myAwesomeApl = {
someFunction = () => Promise.resolve() »
someOtherFunction = () => Promise(resolve
setTimeout(() => {
resolve () ;
}, 1000);

16 }) s
17 };

el e
Ll W N

APl Designh Best Practices

Futureproof your inputs and/or make them extensible where it makes sense.

sum = (a, b) => a + b;
betterSum = (...args) => args.reduce((acc, arg) => acc + arg, 0);

originalFn = (paraml, param2, param3, paramd4 =) => {

O ~J oYW b WN K=

\D

newFn = (paraml, param2, param3, someOtherParam 'default’', paramd =

=
-

betterNewFn = ({ paraml, param2, param3, paramé , someOtherParam = 'default' }) => {

API| Designh Best Practices

Don't be afraid to add guardrails to protect your own systems from
careless consumers, and to protect users from themselves where it
might make sense. Rate-limiting can help ensure that your servers
aren't performing expensive operations past the point of entry, but
won't help ensure that your servers aren't being hammered by
pointless requests that are going to be dropped. Request batching
and throttling within the client application can help with the latter.

API| Desigh Best Practices

SomeExpensiveService './service';
clientRateMap = Map();
MAX PER SECOND = 20;

setInterval(() => {
clientRateMap.clear();

}, 1000);

o ~Jonn & WwWwhNh =

\D

someEndPoint = (req, res) => {
(!clientRateMap.has(req.clientId)) {
clientRateMap.set(req.clientlId, 0);

=
-

}

numRequests = clientRateMap.get(req.clientlId);

(numRequests === MAX PER SECOND) ({
res.status(429).jJson({ error: You have exceeded your plan's rate limits. })

r

}

clientRateMap.set(req.clientId, numRequests + 1);
res.status(200).json(SomeExpensiveService.someOperation());

}i

API| Desigh Best Practices

If a user is doing something within a client application that might lead to
overly-aggressive DOM manipulations, consider providing a Promise-
based API that batches incoming calls and defers the DOM output to the
next animation frame. This will help to enhance browser performance,
with a negligent impact on the application behavior.

Part of the allure of the React library is that all of the logic for flushing
changes to the DOM is encapsulated within the library itself, removed
from the developer's purview entirely. All they need to do is write their
code to recognize that given a specific state, the Ul should look and
function a specific way, without worrying about the timing of flushing to
the DOM, or any ongoing performance optimizations of future releases.

API| Designh Best Practices

$ = element => ({
CcSs: (prop, value) {

element.style[prop] = value;

}s
})i

O WVWoOo~Jonbh & W=

=

S(element).css('background-color’', 'red’').css(margin', '1l0px').css(' padding’', '10px');

APl Design Best Practices

weakMap = WeakMap();

$ = element => {
promise;

{
(prop, value) {

(!weakMap.has(element)) {
weakMap.set(element, []);

o ~Jon & W=

I,_I.
o O

}

=
N =

weakMap.get(element).push(${prop}: ${value};);

=
= W

(!promise) {
console.log('i1nitializing promise');
promise = Promise(resolve => {
window.requestAnimationFrame(() => {
styles = weakMap.get(element);
console.log('animation frame fired', styles);

NNRPRRRFR P
H O W 0~ o WU

(styles && styles.length) ({
element.style.cssText = ${styles.join(' ')} ;
console.log('setting cssText', element.style.cssText);
weakMap.delete(element);

}

N NN
n & W N

API| Desigh Best Practices

Inversion of control allows you to provide a more flexible interface
by giving up power over the implementation of a dependency (is-a)
in favor of specifying a necessary interface on a dependency (has-a).

This can still be combined with sane defaults
for your most-common use case(s).

API| Desigh Best Practices

LoggerMiddleware { import Sentry from 'sentry/singleton’;
constructor({ logger = console } = {}) { SentryLogger {
this. logger = logger; log(message) {
} Sentry.captureMessage (message);
}

log(...) A
this. logger.log(... (') |

} Sentry.captureEvent ({
message: -
(...) { stacktrace;
this. logger. S - });

} }
}

o ~Jonn & W=

el i el
AUl WNEOW

export default new SentryLogger();

API| Desigh Best Practices

LoggerMiddleware();

sentryLogger './sentry-logger';

LoggerMiddleware({ logger: sentryLogger });

o ~Jonn & W=

logger;
(process.env.NODE ENV === 'production') {
logger = require('./sentry-logger-middleware');

} {

logger = require('./console-logger-middleware’');

}

.logger.log('Something went bonkers!');

{
doSomething();

} (error) {
.logger.error(Bailed out early!’', error);

}

API| Desigh Best Practices

Class/method decorators can help inform consumers of ongoing changes:

ThisClassIsInFlux { COPY

oldAndBustedFn(paraml) {

0O ~JOoWUn & WwWwhNh K=

\D

10

11

12 .theNewHotnessFn({ paraml });
13 }

14

15 theNewHotnessFn({ paraml }) {

16 whateverThisFnDoes (paraml);

17 }

18 }

Authoring your own APIs

e When your entire APl uses a consistent interface (e.g. Promise-based),
composition becomes much simpler, and building higher-level
abstractions becomes almost common-sense in some cases.

e Given a low-level API, don't be afraid to build your own custom APIs on
top to simplify your own workflows where it makes sense. If you're
lucky, you could be the next big library author!

Authoring your own APIs

When authoring APIs, think about your own favorite APl experiences,
and what you loved most about them. Draw inspiration where it makes
sense, even if it feels derivative. In software engineering, people care
more about the comfort of familiar and predictable interfaces than
they do about original thinking for the sake of being original.

Authoring your own APIs

AssertionPromise './assertion-promise’;
PromiseBase './promise-base’;
puppeteerService '../helpers/v3ui/services/puppeteer-jest-service’;

ElementHandlePromise = PromiseBase {
assert(...args) {
| AssertionPromise((resolve) => {
resolve() ;
}y . selector,)) .assert(...args);

}

o ~Jonn & W=

i
N m O W

click(options) {
return this.waitForPromise ((resolve) => {
elementHandle = -
elementHandle.click(options);

e S E
oUW

resolve(elementHandle);

})
}

N NN ==
= O O 00

html() {
return new AssertionPromise ((resolve) => {
page = puppeteerService.getPage();
elementHandle =

N N NN
b & W N

Summation

e Good APIs encourage well-read, declarative code

e Minimize API surface where you can

e Don't be afraid to not reinvent the wheel

e Consistent interfaces for predictability and composition

e Reduce the risk of footguns anywhere you can

e Unobtrusive messaging can help consumers stay up to date
e Dogfood/Champagne/Your-favorite-metaphor here

https://bit.ly/dx-in-api-design Richard Lindsey @Velveeta

